Strain Gradient Elasticity and Dual Internal
Variables

Arkadi Berezovski

Abstract The framework of dual internal variables approach is used to formulate a
strain gradient elasticity model. The elimination of internal variables results in an
equation of motion with no causality issues. Furthermore, the Aifantis-type strain
gradient model is reproduced if the primary internal variable is proportional to the
Laplacian of the strain gradient.

1 Introduction

The strain gradient elasticity is a natural extension of classical theory that takes into
account the internal length scale (Aifantis, 2016). Classical linear elasticity theory
is characterized by the Hooke law which in one-dimensional case takes the form of
the stress-strain relation

o =pcle, (1)

where o is the stress, p is the density, & is the strain, ¢ is the elastic wave speed.
The corresponding equation of motion in terms of the displacement u is the well
known wave equation

e = ity 2)

Accordingly, the free energy density W is a quadratic function of the strain

2
W= %32. 3)

Taking the strain gradient into account, the quadratic free energy is represented as
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Then the stress is generalized, by definition,
ow
o=— =chs+Asx, ®))
oe
and the double stress is, correspondingly,
ow
u= = Ag + Be,. (6)
oe,

In terms of stresses, the equation of motion takes the form (Mindlin and Eshel, 1968)
PUtt = Ox — Hxx» @)

which, in terms of displacement, is transformed to
ptry = pctitxx = Bityxxx. ®)

It is instructive to visualize dispersion properties of this equation. Considering
harmonic wave with the frequency w and wavenumber k

u(x, 1) = ge'kx=en, )
we arrive at the dispersion relation
pw? = pc*k* + Bk*. (10)

In terms of dimensionless frequency and wavenumber

k
=2 =2 (11)
w w
we have
w/2 — k12 +Blk,4, (12)

where wq is a characteristic frequency and B’ = Bwé/ pc*. The corresponding
dispersion curve is shown in Fig. 1. As can be seen, only acoustical branch of the
dispersion curve is reproduced (Lombardo and Askes, 2012; Madeo et al., 2013, c.f.).
The dispersion curve with positive B is unrealistic (Askes et al., 2002; Metrikine
and Askes, 2002).

The same situation holds true for a low frequency, long wavelength approximation
of the micromorphic elasticity (Mindlin, 1964) with vanishing relative deformation
(Mindlin and Eshel, 1968; Fleck and Hutchinson, 1997; Lam et al., 2003; Zervos,
2008; Dell’Isola et al., 2009; Forest and Sab, 2012; Rosi et al., 2018) based on the
free energy density for linear isotropic elasticity in the form (Mindlin and Eshel,
1968)
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Fig. 1 Dispersion curves for B’ = 0.0256.
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where g;; is the strain tensor, A and u are Lamé constants, a; are additional consti-
tutive parameters.

Another approach to strain gradient elasticity is represented by a Laplacian-based
theory of gradient elasticity provided by Aifantis and coworkers (Aifantis, 1992; Ru
and Aifantis, 1993; Altan and Aifantis, 1997)

gij = /laijekk + 2,ue,-j - lz(/lé‘ij{:‘kk’mm + 2/18ij,mm)’ (]4)

where o7 is the stress tensor and [ is a length scale parameter.

This idea, which has been extensively elaborated by Askes and coworkers (Askes
et al., 2002; Metrikine and Askes, 2002; Askes and Metrikine, 2002; Askes and
Aifantis, 2006; Askes et al., 2008; Askes and Gitman, 2010; Askes and Aifantis,
2011; DeDomenico and Askes, 2016) as well as by other researchers (Polizzotto,
2014; Broese et al., 2016; Polizzotto, 2017; Khakalo and Niiranen, 2018; Forest,
2020; Broese et al., 2021), is unable to reveal the optical branch of the dispersion
curve due to the absence of higher order time derivatives in the equations of motion.
This is related to the problem of causality (Metrikine, 2006) and the possibility
of infinite wave propagation speed. The causality problem can be solved by either
phenomenologically adding the higher order time derivatives (Metrikine, 2006;
Askes etal., 2008) or by using internal variables (Engelbrecht et al., 2005; Berezovski
et al., 2009, 2011; Engelbrecht and Berezovski, 2015; Berezovski et al., 2020).
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The goal of this paper is to show how dual internal variables can be used to
model strain gradient elasticity while avoiding the causality problem. Numerous
strain gradient applications (Askes and Aifantis, 2011; Aifantis, 2020) necessitate
this.

2 Dual internal variables

In the small-strain approximation, the local balance laws governing the motion of
elastic solids are (no body forces)

d(pvi)

ot O'ijyj = O, (15)
0& .
o - 0i&ij+ Qi =0, (16)
and the second law of thermodynamics takes the following form:
oS (0
—+(=] =0. 17
ot ( o ),i 4

Here v; is the particle velocity, & is the internal energy per unit volume, S is the
entropy density, Q; is the heat flux, 6 is temperature, dot over a symbol denotes time
derivative.

Applying the dual internal variable concept (Van et al., 2008), we consider internal
variables as second-order tensors. In this approach, the free energy per unit volume
W is represented as a sufficiently regular function of strain, temperature, and two
unspecified internal variables ¢;; and y;

W=W(8ij,9,<p[j,lﬁ[j). (18)
The stress and entropy are defined as usual

W S = _ow (19)

O'ij=38ij, 90

and two quantities conjugated to internal variables are introduced as follows:

oW oW
Aji=———1, Bj;i=——. 20
J (9901] J alpu ( )

In terms of the free energy W = & — 6, entropy inequality (17) is transformed to

0 00 i
W +(Q—)9i+0'ii$‘i]’20. 21D
0 , Jer,
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The time derivative of the free energy is determined by accepted functional depen-
dence (18) and equations of state (19)

@_6W Og;j +@%+ oW 0¢ij N oW oi; _
ot _(981",' ot a0 ot (9(/)1']' ot 61&1",' or 22)
=0yéij — S0 — Aijgij — Bijiij.

Here dot over a symbol denotes time derivative.
When we combine relationship (22) and dissipation inequality (21) we get

_%g,i"'Aiijij"'Bijlj/ij > 0. 23)

Consequently, dissipation is governed by thermal and internal factors.

2.1 Evolution equations

In the isothermal case, the dissipation inequality is expressed in terms of internal
variables
Ajj¢ij + Bijij 2 0. (24)

If the case is non-dissipative, the most straightforward solution of Eq. (24) is
¢ij = Bij, (25)

ij = —Aij. (26)

In this case, the evolution of one internal variable is driven by another, indicating
the duality of the internal variables.

2.2 Quadratic free energy

A quadratic function of the arguments is used to represent the free energy

D,

1 Ds
W= SAziiejj + peijeij + Digijij + — ¢ijeij + —Vijdij- 27

2

The internal variable ¢;; is regarded as primary while the internal variable i;; is
considered auxiliary. Equations of state that correspond to them are
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In terms of the displacement, the balance of linear momentum takes the form
pii; = (A+ pujij+pu; jj+Dig;j ;. (29)

The evolution equation for the internal variable ¢ is determined by elimination the
second internal variable using equations (25) and (26)

@ij = —D3yij = D3A;; = —D3Dg;j — D3Dsg;;. (30)

Furthermore, we can write a single equation of motion in terms of displacement
differentiating equation of motion (29) twice with respect to time and applying
evolution equation (30)

Pl = (A )i =iy jj = _D3D%%(ui,jj"'uj,ij)_D3D2(pﬁi_(/1+ﬂ)uj,ij_/~‘ui,jj)-
(3D
We expect that the internal variable ¢;; is a function of the strain gradient, i.e.,
@ij = ¢(&ij k). That is, the second rank tensor ¢;; must be expressed in terms
of the third rank tensor &;; . The obvious choice for such a relationship is the
proportionality of internal variable ¢;; to the Laplacian of the strain gradient

@ij = keij ik = kAg;j, (32)

where k is an appropriate constant. The application of Eq. (32) in the definition of
the stress (28); results in the Aifantis strain gradient model (Aifantis, 1992; Ru and
Aifantis, 1993; Altan and Aifantis, 1997; Askes et al., 2002; Metrikine and Askes,
2002; Askes and Aifantis, 2011)

oij = /ldijskk + 2/.18ij + leAEij. (33)

However, equation of motion (31) is free from the causality problem.

3 Concluding remarks

The use of dual internal variables allows to eliminate the causality problems in the
corresponding dispersive wave equation in the context of strain gradient elasticity.
The Aifantis model for the strain gradient elasticity is reproduced by proportionality
of the internal variable to the Laplacian of the strain tensor. Since the third-order
strain gradient tensor is not explicitly included in the presented model, it does not
replace existing strain gradient models. The model can be combined with other
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strain gradient models that are currently available (Lam et al., 2003; Askes and
Aifantis, 2006, 2011; Bacigalupo and Gambarotta, 2014; DeDomenico and Askes,
2016; Zhou et al., 2016; Madeo et al., 2017; Polizzotto, 2017; Khakalo and Niiranen,
2018; DeDomenico et al., 2019; Fu et al., 2020).
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